Green Products

White Light LED products can be used as a powerful deterrent with LED Lighting Facts

Posted on Updated on

Summary: the advantages of LED lighting

M-lIte High Bay picture of warehouse

LED lighting works much better than traditional lighting solutions, such as halogen flood lights or metal halide lamps, for a number of reasons, including:

Led1.jpg
  1. Lower energy consumption (LED’s offer the lowest possible running costs: less than 100 watts for the highest power units; whereas with other forms of lighting much more energy is wasted generating heat)
  2. Superior quality illumination (even spread of light, no dark or bright spots, better targeting especially with higher-end LED lighting products)
  3. Longer product life and reliability (up to 100,000 hours – in comparison fluorescent bulbs typically last 10,000 hours and incandescent bulbs 1,000; the best LED products available today deliver 10 years life, with warranty)
  4. No maintenance (no bulb failure, no down-time)
  5. Instant start (no warm up time for full light output)
  6. Suitable for challenging environments (higher-end products are weather-hardened, hot and cold climate tolerant, vandal resistant)
  7. Flexibility of installation and maintenance (with new and specialist developments such as poe, and explosion protected lighting)

With its higher performance and lower power consumption LED lighting provides an ideal solution for any CCTV application.

 

Energy saving benefits

Leds are unquestionably the most energy-efficient choice for lighting and by converting to LED lights, users can make significant savings on energy bills. It’s estimated by the Carbon Trust that 40% of energy used by organisations goes on lighting, so the potential to reduce bills is substantial. Not only to leds save energy and have lower running costs, because they are not prone to bulb failure they do not carry the ‘hidden’ energy costs associated with time consuming maintenance work.

When you take into account higher running costs and money spent on replacing bulbs that don’t last very long an organisation using 100 CCTV or security lights could be wasting £45,000 per year. This is based upon 4,400 hours usage per year at 10p kw/hr; with labour costs conservatively calculated at £40 per bulb change; it’ll be much higher if a cherry-picker is needed.

(NB. If you want to get an accurate figure for a particular site, in fact it’s very easy to work out exactly how much can be saved by using the energy saving calculator which Raytec provides online).

 

Superior LED performance

Led2.jpg

With ongoing product development and improvements based on frequent night-test sessions, LED illuminators have been refined to provide the even quality illumination that is exactly what CCTV cameras need.

With the right products the light can be easily targeted and adjusted to give both the correct range (typically up to 370m+) and angle of coverage (typically anything from 10-180°) for each application.

LED lights are also highly flexible in use, they start up immediately (with no warm up period) and so can be used for active warning systems, and for intelligent detector-driven CCTV applications.

 

The advantages of IR (infra-red)

Designed for use with both black & white and day/night cameras, infra-red illuminators provide IR light which is invisible to the human eye but visible to the CCTV camera.

Because IR is invisible to the human eye it is ideal for covert surveillance; the camera can see, but the intruder cannot.

Further, as their light cannot be seen, IR illuminators are the perfect solution in sensitive areas where light pollution needs to be avoided; areas such as residential neighbourhoods and parks.

IR illumination also works well over long distances, with illumination at ranges up to 370m. Therefore in many applications IR illumination is the perfect lighting tool for CCTV, allowing cameras to capture crisp, clear images in black & white, and optimising camera performance.

 

When to choose WL (white-light)

Where accurate colour images are required, white-light illuminators are the ideal solution, providing high quality visible crystal clear illumination to optimise colour camera performance.

Led3.jpg Led3a.jpg

White Light LED technology allows accurate colour image capture at night and ensures that the CCTV system works at its best 24/7.

White Light LED products can be used as a powerful deterrent. For example, with its quick start characteristic this technology can be used as part of an intelligent, detector-driven security system. Purpose-designed for CCTV, the technology’s even illumination allows the best colour image capture, without the bright or dark spots which can be a problem with other types of lighting.

This is also a multi-purpose lighting solution that can be used for non security applications, such as commercial and general lighting.

Alternative lighting technology

Incan.jpg

Following is a summary of different types of lighting technology that has been commonly used.

1) Incandescent Lamps (Including Halogen)

For CCTV purposes, bulb life is limited and they are very inefficient. They are generally expensive to run (typically500 watts) and expensive to maintain (up to 3 bulb changes per year). End users are increasingly moving away from using halogen based lighting products in favour of longer life leds.

Incandescent bulbs were the first bulbs developed and are highly inefficient, wasting 90% of input energy as heat. Their heat output is such that they are extremely hot to touch and can heat surrounding objects in close proximity.

Halogen bulbs provide a minimal increase in efficiency and still waste as much as 85% of input energy as heat. Halogen bulbs are smaller and higher pressure than incandescent bulbs causing halogen bulbs to have an extremely hot surface hazardous to the touch. Bringing the bulb into contact with cold surfaces such as residue from fingerprints, particularly sodium, may cause bulb failure.

Fluor.jpg

2) Fluorescent Lamps

Their effectiveness for CCTV purposes is limited due to the perceived “beating” effect when used with a CCTV camera. They are generally low power and designed mainly for internal fittings. As they have a large diffused source the light output is difficult to focus and control. Fluorescent bulbs are much more efficient than incandescent bulbs, operating at approximately 40% efficiency. Only 60% of the input energy is wasted as heat so fluorescent lamps run much cooler than incandescent lamps and can provide equivalent power from much lower electrical input. For this reason, and the fact that fluorescent lamps tend to last 10 – 20 times as long as an incandescent bulb, they are commonly used in domestic homes as long life bulbs. However, fluorescent lamps produce a flicker imperceptible to the human eye but visible to cameras as a “beat” effect making fluorescent illumination unsuitable for video surveillance. Fluorescent lamps also contain the hazardous material mercury.

Hid.jpg

3) HID Lamps

HID lamps could be used in CCTV. They are efficient, provide good colour rendition and they provide a relatively long life – up to 12,000 hours. However, they suffer from a slow start (2-3mins) and cannot be turned on immediately after being turned off. High intensity discharge lamps are 60-80% efficient and compared to incandescent and fluorescent lamps provide much more light from a smaller package. HID forms include low pressure sodium (unsuitable for CCTV due to its yellow tinge), high pressure sodium (which is more acceptable but produces worse colour rendition than Metal Halide) and Metal Halide. Metal Halide HID bulbs provide a very natural, cool clear White-Light with excellent colour rendition. HID lamps are commonly used for street lighting and in car headlights.

LED’s – technical background

Led20.jpg

Light Emitting Diodes (LED’s) are semiconductors that naturally emit a narrow band of light. They are a relatively new development in lighting but their usage is expanding rapidly on the back of clear technical advantages. LED’s are comparatively expensive to purchase but provide extremely long life up to 100,000 hours. In comparison fluorescent bulbs typically last 10,000 hours and incandescent bulbs 1,000. LED efficiency is typically 80-90% with the greatest efficiency coming from LED’s producing red light. Advantages of LED’s include extremely low electrical consumption, low operating temperatures and continuity of colour through the operating life of the LED. Unlike traditional bulbs LED’s are also highly durable, insensitive to vibration and they are more robust and difficult to break. They are also capable of emitting light at a given wavelength without the need for a filter and are quick start devices. Power management and thermal management are important to ensure LED’s deliver expected performance.

 

Recent LED developments

Through-hole leds are expensive to mount to pcbs and generally are not as robust as Surface Mount Technology (SMT). SMT LED’s offer better thermal management and allow the LED’s to be driven harder without compromising performance.

CCTV lighting – which wavelength?

1) Infra-Red:

  • 715-730nm – overt IR, produces a red glow like a red traffic light.
  • 815-850nm – semi-covert IR with a faintly red glow only just visible.
  • 940-950nm – covert IR invisible to the human eye.
Led4.jpg

Infra-Red light can be used to provide discrete or covert illumination for CCTV; to minimise light pollution; or to provide very long distance illumination. IR can be used with monochrome and day/night cameras. NB. As IR becomes more covert it becomes more difficult for the camera to see and consequently distances are reduced. 940-950nm IR should only be used with highly sensitive cameras fitted with high performance lenses. Focussing is also more difficult at those wavelengths as lenses start to operate more inefficiently with 940-950nm.

2) White Light:

A mixture of light from 400-700nm provides true White-Light.

Led5.jpg

When to use: to illuminate an area for the CCTV system; improve the overall level of illumination for key personnel; provide a welcoming environment for authorised personnel; and to deter crime by illuminating a secure area on intrusion; White Light can be used with monochrome, colour and day/night cameras

Beam Patterns

When providing CCTV illumination the beam angle should always cover the full field of view. The correct angle of illumination must be used to light the full scene. Modern units allow the angle of illumination to be adjusted on site to suit the specific scene requirements.

Traditional Beam Patterns: as standard, beam patterns from an illuminator are provided at a fixed angle, either narrow or wide. Historically, spot and flood lenses have dominated but more recently these have been rejected in favour of more precise angles such as 10, 30 or 60 degrees. However, these are still fixed angle output, meaning they are inflexible on site. If the lighting requirements change or if the cameras field of view is changed the lighting may be unacceptable. Also, it means that all lighting decisions must be made prior to installation which is often difficult. Often final lens decisions and viewing areas are made during the installation process. Typical Beam Patterns: Spot; 10°; 20°; 30°; 60°; flood.

 

The Inverse Square Law

Led6.jpg

The inverse square law describes how the intensity of a light is inversely proportional to the square of the distance from the light source(the illuminator). Light obeys the inverse square law so to fully understand the way that light travels, and the resultant impact on CCTV systems, some understanding of the inverse square law is required. As light travels away from the point source it spreads both horizontally and vertically and therefore intensity decreases. In practise this means that if an object is moved from a given point, to a point double the distance from the light source it will receive only a ¼ of the light (2 times the distance squared = 4). Taking this theory further, if an object at 10m from a light source receives 100 LUX, moving the object to 40m, it will receive only 1/16th of the light (4 times the distance, squared = 16) resulting in the object receiving only 6.25 LUX. The inverse-square law applies to both White-Light and Infra-Red light in the same way. The effects of the inverse-square law make clear how a CCTV camera has to handle a wide range of light levels within a given field of view and shows the importance of even illumination.

 

Using multiple illuminators

The inverse-square law explains how light intensity reduces over distance but can also be used to calculate how many additional illuminators are needed to achieve specific increases in distance.

Calculating how many illuminators are needed to cover a given distance:

Led7.jpg

If the distance from a single illuminator is doubled then the intensity of the light is quartered. Therefore to achieve double the distance of one illuminator, achieving the same power on scene, 4 illuminators are required (2 squared = 4). Similarly to achieve 3 times the distance of one illuminator, 9 illuminators are required (3 squared =9).

Calculating the impact of multiple illuminators on distance: the inverse square law can also be used to calculate the effect of using multiple illuminators by taking the square root of the change in illumination intensity at source. For example, using 4 illuminators will produce a 2 fold increase in distance (the square root of 4 is 2), and using 25 illuminators will result in a 5 fold increase in distance (the square root of 25 is 5).

NB. There is no need to use multiple illuminators to achieve increases in distance. Tighter angle devices, or more powerful illuminators can provide the required additional power output.

 

How to Specify Lighting

1) Infra-Red or White-Light?

Identifying the purpose of the system will point to the type of light to use.

Infra-Red light provides greater distance, a varying degree of invisibility (depending on the exact wavelength) and no light pollution. Infra-Red is light designed only to be used by CCTV cameras. White-Light provides the opportunity to illuminate an area for pedestrians, staff or vehicles in addition to the CCTV system. It can also be used as a visual deterrent when turned on if an intruder is detected by a PIR.

2) Angle?

The illumination should ideally match the angle the camera / lens is set-to in order to provide best performance. If not, and too narrow an illumination angle is chosen, the camera will simply see a bright spot in the middle of the scene and the contrast between light and dark areas on scene will be too great to provide high quality images. Illumination which is too wide wastes energy and reduces achievable distance.

Note: The adoption of vari-focal lenses has caused difficulty in specifying lighting. With vari-focal lenses the exact FOV is often only established on site through trial and error making exact matching to fixed angle lighting impossible in advance. The latest vari-focal lighting allows the output angle of an illuminator to be adjusted on-site to match the set-up of a vari-focal lens.

3) Distance?

After selecting the angle, the next consideration is distance. How far should the lighting illuminate? Installers and specifiers should be aware that as angle increases, distance decreases.

4) Camera and Lens Considerations

The exact performance of any illuminator in a CCTV system is dependant upon the camera and lens combination used. For best results a high sensitivity camera (for IR projects an IR sensitive camera) should be used with a high transmission lens. Generally a CCTV imaging system (camera, lens, illumination) is only as good as its weakest link.

Led8.jpg

 

Practical Installation Considerations

Led9.jpg

Lighting and Domes

Providing lighting for domes has long been a challenge for CCTV professionals as the lighting cannot be fitted to move with the camera as would be the case with a traditional PTZ system. However, there are three lighting solutions available for fully functional domes:

  1. Wide angle illumination: New wide angle illuminators covering 120-180° allow the full 360° angle of a dome to be covered with only 2 illuminators.
  2. Target Area Illumination: Illuminators can be used to target specific points of interest including gates and entry points on pre-set positions.
  3. Local Area Illumination: Illumination can be fitted away from the camera to flood the scene. When the camera zooms in the whole area will be lit.

 

Led10.jpg

Lighting and PTZ systems

Typically PTZ systems are used in applications where a single camera is designated to secure a large area. At long distances the camera lens is often zoomed in giving a narrow field of view and at short distances the camera lens pans to a wide angle. The flexibility of such a system requires the lighting to cover long distances and narrow and wide angles. The solution is to use a twin lighting system. The old fashioned method was to use 1 narrow and 1 wide angle illuminator. The better solution is to provide even illumination. Both illuminators should be attached to the PT motor by a bracket. A second solution for shorter range PTZ units is to use a single wider angle illuminator such as a 30° – 60° model. If the required distance is not too great a wide angle illuminator may be able to cover the maximum distance as well as the wide angle.

 

Infra-Red and Focus Shift

Led10a.jpg

Focus shift is a potential issue encountered when setting up camera systems for 24-hour performance using Infra-Red. The different wavelengths of visible light (400-700nm) and Infra-Red (700-1,000nm) create different focus points through the lens onto the camera chip. This can lead to a loss of image focus at night, particularly if the camera is set up during daytime operation. The degree of focus shift depends on a variety of factors:

  • Lens quality
  • Wavelength of the IR. (Longer wavelengths such as 950nm will provide a more exaggerated focus shift).
  • IR response of the camera

Focusing the camera correctly for low light performance means the camera will be focussed for IR with the aperture fully open. During daytime operation the increased depth of field created by a closing aperture will counter the effects of focus shift. The best solution is to focus the camera using only Infra-Red. This can be achieved by: setting up the camera at night using Infra-Red lighting; using an IR pass filter over the camera lens to simulate.

Back Focusing

Back Focus describes the relationship between the distance of the lens to the camera chip. This distance is critical to maintaining the proper depth of field through changing focal lengths and varying light conditions and setting it correctly can ensure the image stays in focus 24 hours a day. Correct back focus of the camera can be used to overcome the typical issue of a sharp daytime image followed by a blurred image at night. This situation is caused when, during bright sunlight, the lens is closed and the depth of field is very wide, whereas when the light level drops the iris opens and the depth of field decreases causing a lack of focus. For correct 24-hour focusing a camera should be back focused with the lens iris fully opened to simulate the worst possible depth of field. Neutral Density filters can be used to cover the lens during back focusing to simulate lower light intensity on scene. This is an effective solution for colour cameras or cameras using White-Light CCTV illumination. However, for mono cameras, or day-night cameras using Infra-Red lighting, the best solution is to place an Infra-Red Pass filter over the lens.

Led11.jpg

High Sensitivity Cameras and Lighting

All cameras require light, sensitivity is simply a measure of how much light they need. High sensitivity cameras require less lighting to produce high quality CCTV images. However, even high sensitivity cameras should be fitted with professional CCTV lighting to provide even illumination. This allows the camera to provide sharp, clear images.

Megapixel cameras and lighting

Digital cameras record brightness on a per-pixel basis so the greater the amount of pixels the smaller surface area each pixel has available to capture light. The end result is that the greater the resolution the less sensitive the camera. A megapixel constitutes 1,000,000 individual pixels and Megapixel cameras offer a number of advantages to installers including higher resolution, wider angle images, and the ability to digitally zoom images. However, they are by nature less sensitive than standard CCD cameras meaning they require additional lighting to achieve high quality images at night. With Megapixel cameras ALWAYS use additional CCTV lighting to achieve high quality night-time images. Megapixel cameras only deliver their advantages when viewing a correctly illuminated scene.

Led12.jpg

 

This article was supplied by Raytec and M-Lite Solution providers of LED Lighting Products

Click here to contact M-Lites.com for the Best LED Lighting Solutions in the USA.

 

 

Pot LED Grow Lights, M-Lite LED Grow Lights

Posted on Updated on

M-Lite Lumini Grow Light
M-Lite Lumini Grow Light
M-Lites LED lighting technology is the future of the grow light industry and as with our emerging technology we are constantly raising the bar for more efficient LED lighting for our client’s needs. Our LED grow lights are manufactured with proven LED lighting technology. M-Lites electrical design produces only the best and brightest LED grow lights to provide you with maximum results at affordable pricing.
M-Lite Lumini light is the most cost effective way for growers to boost healthy crop yields. Supplying the compatible light spectrum which is absorbed by the plant. This cuts down the plant growth period. Our grow lights are programmed for the spectrum sprouts and flowers, providing an excellent growth cycle.
Intelligent Control
M-Lite Controller
M-Lite Controller

At M-Lite use the newest technology, DMX and PMW control way. There are four individually adjustable channels including; Automatic, Veg, Flower,and UVB channels. The unit provides a dimmer and timer, with 2.4 GHz wireless intelligent control with multiple join technology. Steady and smart voltage auto-switching regulating power supply, adjusts to the appropriate voltage for international use.

Intensity
We use actual 3 watt to 5 watt high power and name brand chips, and our high intensity LEDs are combined with the use of 90 degree high light transmission lens. This provides amazing results. 9500-10000LM, which is more power than other grow lighting, and the brightness is equal to a 1000 HID covering 25sq feet by 13×16 feet for high-light requiring plants.
m-lite_spectrum_2014-06-13_2031
m-lite_lumini_2014-06-13_2036Spectrum
M-Lite Lumini supplies the four channels with 100% usable spectrum for your plants. with 100% usable spectrum for your plants.
Each channel has separate dimming and timing. The supplied Veg/Flower effect is great for plant growing.
There is 100% usable light spectrum for plants. HID and HPS produce excess heat that creates evaporation and burns plants.
Main specification
  • Actual power draw 350 watts
  • 1.7 amps @ 220V;3.4amps @ 110V
  • Power Factor(PF): > 0.96 Frequency: 50/60Hz
  • AC Cable Length: 4ft
  • Universal Input Range:100 to 240VAC / 50 to 60Hz
  • UL, CE, & ROHS
m-lite_plant_2014-06-10_0853

M-Lites LED Grow Lights emit the exact spectrum of light needed for photosynthesis and all phases of plant growth

With M-Lites latest innovative advancements in LED grow lights, we can provide the intensity of an HID lighting fixture without the issues of high heat or electrical cost that comes with traditional high pressure sodium or metal halide lamps.
M-Lites LED grow lights are used for growing plants indoors including hydroponics, horticulture, greenhouse lighting, seeding, seedling, farm, flower exhibition, and garden applications to replace traditional high pressure sodium (HPS) or metal halide (MH) lamps. In hydroponics, LED grow lights are the most recommended type of light source, because it gives out superior contribution to hydroponic plant growth. Our LED grow lights are energy efficient and are maintenance-free during its operation period of the 5 year or 50,000 hour warranty.
Our grow light consumes less power and produces just a fraction of the heat of high intensity discharge lamps. This is why more and more growers prefer to use M-Lite grow lights.
M-lite lumi grow

LED Terminology – Kelvin, CRI, and Luminous Flux

Posted on

LED Lighting Terminology 
Color Temperature and Color Rendering (Kelvin and CRI): There are two standard measurements for the color characteristics of light: “color rendering index” (CRI), a term used to describe the extent to which an artificial light source is able to render the true color of objects as seen by natural outdoor sunlight which has a CRI of 100, and “color temperature”, which expresses the color appearance of the light itself.

Color Rendering Index (CRI): Incandescent is used as the base reference of 100 CRI. Compact fluorescent lamps are graded at 82-86 CRI, which is considered high quality color rendering. CRI is a more important consideration for retail lighting design than it is for office lighting.  Any CRI rating of 80 or above is considered high and indicates that the source has good color properties. Incandescent lamps and daylight have a CRI of 100, the highest possible CRI. The higher the CRI of the light source, the “truer” it renders color. At M-Lite we strive to manufacture our LED lighting at 80 CRI or better.

Color Temperature (Kelvin): Refers to the way color groups are perceived – the psychological impact of lighting. Color temperature is how cool or warm the light source appears. The color temperature of a light source is a numerical measurement of its color appearance. This temperature is based on the principle that any object will emit light if it is heated to a high enough temperature and that the color of that light will shift in a predictable manner as the temperature is increased. This system is based on the color changes of a black metal as it is heated from a cold black to a white hot state. As the temperature increases, the color would shift gradually from red to orange to yellow to white and finally to a blue white. Color temperature is measured in degrees Kelvin (K). Colors and light sources from the red/orange/yellow side of the spectrum are described as warm (incandescents) and those toward the blue end are referred to as cool (natural daylight).  The sun, for example, rises at approximately 1800 Kelvin and changes from red to orange to yellow and to white as it rises to over 5000 Kelvin at high noon. It then goes back down the scale as it sets.

LED LIGHTING COLOR CHART
LED LIGHTING COLOR CHART

Luminous Flux – the flow of light measured in lumens. With light bulbs, it provides an estimate of the apparent amount of light the bulb will produce. Depending on the application, much of an incandescent’s light is wasted because it’s emitted in every direction. LEDs on the other hand, put out directional light, sending all of the light exactly where it’s needed. This is why an LED producing 500 lumens might be equivalent to an incandescent producing 900 lumens.

Lumens measure how much light you are getting from a bulb. The more lumens means it’s a brighter light; fewer lumens means it’s a dimmer light.

Lumens produced is just one factor of the performance of a light, and sometimes it is misleading. To understand how to fully evaluate the LED product, we need to look the overall system efficiency, optical control, thermal management of the LEDs.

Another factor that can also be very misleading is the life of an LED lights, the life time is defined by how long will the light last before the fixture reaches 20 percent lumen depreciation.

For example, most of the time an LED Light has a life time of 50,000 hours, it does not mean that after 50,000 hours, the LED lighting product will not work at all. It will still be working, but the Lumens it emitts is factored at 20% less than when it was first used.

For more LED Lighting Facts, visit our website at http://www.m-lites.com

m-lite going-green-sustainability

 

Office supply company in Elgin converts showroom to LED Lighting

Posted on Updated on

Rieke Office Interiors : A Green building making the jump to LED

RIEKE OFFICE INTERIORS
RIEKE OFFICE INTERIORS

Rieke Office Interiors (ROI) is Certified by the U.S. Green Building Council

LEED®, the “Leadership in Energy and Environmental Design” Green Building Rating System, is the nationally accepted standard for green buildings developed by the USGBC membership. Full details from the US Green Building Council website. Contact an ROI sales representative for more information about breakthroughs in building science, technology and operations that are available to designers, builders and owners who want to build green and maximize both economic and environmental performance.

The Environment- We care!!

ROI recycles all of its paper, cardboard, plastic stretch film, wood scrap, wood dust and metal. Annually, this is the equivalent of 12 semi-trailers that is being kept out of land fills. So making the switch to LED lighting is a welcomed change for ROI.

RIEKE OFFICE INTERIORS home-design

To justify our clients investment, we measure the return, and provide our clients with peace of mind, we always provide a comprehensive Client Impact Analysis report that measures, and quantifies the end results of our Energy Efficient LED Lighting upgrade based upon pre-process measurements and information provided by our clients team.
M-Lite Solutions overall goal is the complete success of every LED Lighting upgrade. To that end, we have outlined an anticipated Return on Investment (ROI) in our Analysis. This analysis provides a base line for our clients expectations and the framework for their decision-making.

Cost of Waiting

ROI_cost_of_waiting_2014-05-13_1607

Retrofitting 57 fixtures to LED Light bars is not a huge undertaking. Our reward comes in many ways. Reike office interiors saves $2000 a year with our upgrade, and together we reduce green house gases along the way. M-Lites gets to show off our LED products to hundreds of commercial building owners, and help them save too.

Will you take the Challenge?
Will you take the Challenge?

For more information please email us at Sales@M-Lites.com

 

 

 

 

 

The science of sustainability solutions blog post by TheGuardian

Posted on Updated on

Below is a link to a Great Post on: Too big to save: why commercial buildings resist energy efficiency from the guardian.

http://www.theguardian.com/sustainable-business/energy-efficient-buildings-savings-challenges-behavior-change-research?commentpage=1

Chicago-Factoring

Below is our comment to the Article:

Creating change in business for commercial buildings like this can be partially done by public awareness, but it will really come down to government agencies establishing more green laws that force building owners into making their buildings more energy efficient.

You see, I am an Inventor, I make my own patented and UL approved LED lighting for schools, and other commercial properties. I have a lot of frustration when I walk into a building with old inefficient lighting that is consuming more energy than needed, and my inventions can reduce their lighting cost by 60 to 80 percent per fixture.

Our LED 1x4 Flat Panels consume from 17 to 40 watts
Our LED 1×4 Flat Panels consume from 17 to 40 watts

It further bothers me when I have over 10 Billion Dollars of performance leasing funds to fund these types of projects. I have recently offered our services to many city, and state government agencies to do free building case studies to show how we can put money back into the our building owners pockets by converting to better lighting.

The biggest objection I hear is that it is fantastic that we will save all this money, but we don’t have the money to pay for it. That is why, I provide performance based leasing options to all types of organizations, whom qualify, and are seeking to reduce their own energy use.

New, more efficient LED Lighting should lower energy bills, and maintenance cost, and with our performance based leasing programs being calculated so that they can be offset by these anticipated savings, the leasing option is designed to pay for itself. Excuse has been removed!

The savings assessment is undertaken by Eco Lighting Designs (ESCO), and your staff while the equipment lease is provided by M-Lite Solutions. So when I hear we don’t have the funds to pay for it, you haven’t tried us yet.

I welcome the challenge to make every building in our country more energy efficient, so if you are your buildings Champion or LEED coordinator contact me at dave.rozek@m-lites.com

 

LED Retrofit Project at Chicago Motor Cars

Posted on Updated on

140 1×4 troffers upgraded to our LED Retrofit Kit

Before and after with LED
Before and after with LED

Our project at Chicago Motor Cars was very cut and dry. Owner Frank Sacco wanted a green showroom regardless of the Return on Investment (ROI). He wanted great lighting for his exotic, luxury, and vintage sports cars that are hand-picked by some of the nation’s top buyers. The lighting quality at Chicago Motor Cars must be exceptional, and M-Lite Solution was ready to make it happen with one of our LED retrofit kits.

cropped-led_retrofit_kit_1x4_troffer-png.jpg

We had a few different lighting solutions for Chicago Motor Cars, but our 1×4 LED retrofit panel fit the clients request perfectly. Chicago Motor Cars current troffers consumed 94 watts per fixture.  Each troffer put out a yellow colored light with the standard humming noise that would prevent a small child from napping. Our 1×4 LED retrofit kit only consumes 34 watts, will push out 34oo lumens in a pure white light without any light flicker, or that annoying humming sound.

cmc led 1x4 troffers

 

To justify the investment of Chicago Motor Cars, we measure the return, and we create a comprehensive Client Impact Analysis that measures and quantifies the end results of our Energy Efficient LED Lighting upgrade. This is based upon pre-process measurements, and information gathered by us and the team at Chicago Motor Cars. Below is a chart that shows the “Cost of Waiting” report.

cmc_led_retrofit_kit_2014-04-28_2023

Reducing green house gases is a big concern of Mr.Sacco’s, and he was happy to see how doing a small job like his Chicago Motor Cars west showroom would reduce their fixtures green house gases production by more than 63 percent. This is comparable to saving 3,283 trees or 8 acres of trees planted.

cmc_led_1x4_evir_impact_2014-04-28_2026

Chicago Motor Cars is one of many commercial propriety owners in Illinois that are making the change to more efficient LED lighting, which is why Illinois leads the nation in “Green Buildings”. However, small jobs like this one do not have a fast rate of return due to the limited hours of operation compared to a factory that uses their lighting 24/7. Chicago Motor Cars will see a return on investment in less than 16 months of the LED lighting retrofit.

 

cmc_savings_over_10_years_2014-04-29_0906

Of course this was not a large project of ours, and the larger the project, the more the energy usage would yield, thus a higher rate of return. Our overall goal of reducing our clients energy usage was attained by reaching a 64 percent reduction. (see chart below)

cmc_energy_usage_2014-04-29_0929

So next time you look at all the lights in your office, school, or warehouse ask yourself how much you could be saving with an LED retrofit by M-Lite Solution. For questions, and details regarding this energy-saving post, please contact Dave Rozek at dave.rozek@m-lites.com.

m-lite_logo_2014-04-08_1715

 

 

How can 371 LED Retrofitted fixtures save one school $70,000 over 5 years

Posted on Updated on

Rcsd picture of classroom

LED Lighting Project: Elementary School in Mississippi

One of the most rewarding things one can do is to bring a smile to a classroom of elementary students faces. We did just that in the Mississippi school system last fall, and we look forward to repeating that process of making children smile in a few thousand more classrooms this year in 2014.

Of course giving kids better lighting in their classroom is a huge personal reward for us at M-Lite Solution LLC, but the school district gained much more than just happy students from their LED Retrofit, and LED Troffer upgrades. (see chart below)

Monthly savings (cost of waiting) chart

M-lite_flowood_Cost_of_waiting_snap_shot_2014-04-10_1557

To justify our school projects investment, we measure the return, and provided them with peace of mind by doing a comprehensive Client Impact Analysis that measures and quantifies the end results of our Energy Efficient LED Lighting upgrade based upon pre-process measurements and information provided by the school.
Our overall goal is the complete success of every LED Lighting upgrade for our projects, and their decision makers. To that end, we have outlined an anticipated ROI (Return on Investment) on our chart above, and below. This chart above provides a baseline for our expectations and framework for this projects.

 

Environmental Impact

M-Lite_flowood_environmental_impact_ss_2014-04-10_1601

Not only do we get smiles, and provide our clients with a positive return on investment, but we also get to reduce our planets greenhouse gases by lowering energy consumption with our Led products. It’s a Win-Win for all.

For questions regarding our energy savings products please contact Dave Rozek at 630.290.1319

or email me at Dave.Rozek@M-Lites.com

LED_Retrofit_Kit_2x4_troffer_

 

 

 

 

 

Cost savings can improve your bottom line!

Posted on

Can your bottom line use a boost? 

Cost savings from a lighting component upgrade project are derived from both savings in energy usage and also savings on future maintenance costs in both the capital expenditure on replacement lamps in addition to the man hour costs involved in making the replacements.

LED_Retrofit_Kit_2x4_troffer_

Component upgrading is the term used to describe the process of replacing lamps and tubes in your business premises with new LED retrofit products or LED troffers. The LED lighting upgrades are undertaken to reduce lighting energy costs, maintenance costs, and associated carbon footprint.

LED Troffer

Uniquely, We provide a comprehensive and complete commercial component upgrade service, migrating our clients from their existing lighting to high specification, low cost LED retrofit kits, light bars, or troffers to significantly reduce both energy and maintenance costs as well as making a substantial reduction to their carbon footprint.

SONY DSC

We have designed and manufactured a complete range of high specification LED products to meet the requirements of any commercial component upgrade project.

We are able to undertake commercial component upgrade projects for all sectors of business and industry as well as meeting any, and all local, and federal government requirements.

Typically, based our projects completed to date, energy cost savings alone fall between 50% and 90% of current lighting energy spend giving a project pay back time of between 6 to 36 months (at typical current energy costs).

M-Lite_1x4_panel

To find out what a lighting component upgrade or lighting retrofit for your business will save you please request a survey at

(630) 290-1319and we will produce you a comprehensive report at NO CHARGE.

Cash_savings_hawthorn_ridge

LED Retrofit Project at Hawthorn Ridge Apartments: Case Study

Posted on Updated on

Case Study: Commercial troffer component upgrade to LED Retrofit

 Hawthorne Ridge Apartments: Woodridge, IL. (Small Retrofit Project)

hawthorn ridge 2

 

Component upgrade of 70 fixtures in common areas: 1 x 4 Florescent Troffer to 1 x 4 LED Retrofit Kit (pictured above)

cost_of_waiting_hawthorn_ridge_2

annual_energy_usuage

When we reduce a fixtures power consumption by 50 to 80 percent, and we provided the consumer a maintenance free retrofitted fixture it does make you ask yourself, why hasn’t everyone done this yet? At M-Lite, we have often found that the most common reason why the change has not occurred is because the product has not been demonstrated properly as to how it can be cost effective, and pay for itself.

So let’s see how a little investment can become a huge cash savings over a short period of time.

The actual return on investment (ROI) depends on a few efficiency measures below:

  • How many hours are the lights in use

  • What type of fixture are we upgrading to LED

  • How many are we upgrading to LED

  • What is the cost per kilowatt hour from the current electrical provider

  • How much does it cost to maintain the current fixture annually

Looking above at our snap shots will give you an idea how our recent case study and project came to be.
The maintenance superintendent at Hawthorn Ridge apartments had contacted us after researching multiple LED retrofit solutions, but unfortunately he could not find a cost effective approach that would offer them a decent return on investment. He was referred to us by a retired Dupage County employee, whom had worked with us on a previous energy saving project. We knew this would project would be a challenge due to a limited budget, but we also knew that one of our retrofit systems would provide them with a cost effective solution. After months of testing different solutions, Hawthorn Ridge Apartments selected our MR14 model.
cropped-led_retrofit_kit_1x4_troffer-png.jpg

The MR14 retrofit kits are the perfect component upgrade for most commercial Troffers that are 1×4 in size. These 1×4 Troffers normally have a 2 fluorescent tubes, and ballast system. Depending upon the age, and type they will consume between 68 to 120 watts. Our MR14 LED retrofit kit consumes 34 watts, so worst case scenario it will reduce the fixtures power consumption by 50 percent.

As you can see from above the “Cost of Waiting” chart, it illustrates how it will cost Hawthorn Ridge apartments almost $900 a month not to retrofit. This is huge for such a small project, and considering HUD will give this apartment complex help with the majority of cost is another plus that we did not even factor in on our project proposal.

Another benefit that this project had was that the install was done by the maintenance staff at Hawthorn Ridge, which is one of the reasons why they will have a return on investment in less than 7 months. Since all projects are different we will customize our reports to factor in your variables, but in the case of this project, the cost of an electrical contractor to do the install would of still hit a return on investment in less than 12 months.

Overall, the goal is to save money, and investing in an LED Retrofit project can do just that. Hawthorn Ridge figures this will allow them to cut energy cost, and generate additional funds for other building upgrades in the future.

For further questions on this case study, please contact Dave Rozek at 630.290.1319

 

 

New UL approved LED Troffer: How it can change our lives

Posted on Updated on

Image

Our LED Troffer story:

When my good friend Manny Lin and I looked at how expensive it was to buy a New LED Troffer, we were shocked at the prices that we found. Many of the products that we were looking at to fill the needs on our lighting projects in Mississippi and Chicago were priced from $200 to $600 per fixture. The cheaper units actually didn’t give us enough light and the expensive ones were nice, but were putting our projects way out of budget.

So we went back to the drawing board and looked at out patented LED strip design and drivers. We met with our manufacturing arm and co-designed a NEW LED Troffer with UL approval. This is a huge step for M-Lite Solution, and Eco Lighting Designs being able to offer a LED troffer that retails for less than $100 a fixture, while producing over 5100 lumens of light.

Why is ours different?

The design is simple, and we are not recreating the lighting fixtures design. We have recreated what goes inside of the fixture. Our patented LEDs runs cooler, and our module provides an even flow of electrical current, which increases our LEDs longevity, and lighting output. We feel that the time has come that everyone deserves better light, and this New LED Troffer will do just that.

Image

What type of Return on Investment can we expect?

When you reduce a fixtures power consumption by 50 to 80 percent, and have a maintenance free fixture for years to come, you will position yourself to save money. The actual return on investment depends on a few efficiency measures.

  • How many hours are they in use
  • What type of fixture was it replacing or compared to
  • What is the cost per kilowatt hour from your current electrical provider
  • Current annual maintenance of the previous or comparable fixture

Once we know the above factors we can give you an actual estimate of what your savings will be.

However, we recently did a product test on 70 common light fixtures at a HUD apartment complex in Woodridge, IL. and we will give you an example of their cost savings over a 10 year period.

Image

Each lighting project is its own unique project. The reason I say that is, because this apartment complex has its own maintenance department that installed our products. So if you do not, we would have to factor that cost in.

If you notice from the graph, over a 10 year period they will save approx. $96,000 in energy consumption and maintenance. This project hits a return on investment at only 7 months of ownership based on there usage, and it cost them $823 a month not to do it. So as you can see, converting to an LED product from M-Lite Solution is a very wise investment. This is a small project, it gets really serious when we are talking hundreds, and/or thousands of fixtures.

What if we all made the switch:

Think about this? There are 500 million florescent troffers that need to be replaced or retrofitted in the U.S., not counting new construction.

What if we replaced them all and just ball parked what the savings would be?

We ballpark it at 685 Billion dollars in savings, and I think its much higher than that.

Do you think this could give our country or your business a shot in the arm?

Here’s a few things that I think it can do:

  • We could hire more teachers
  • fix more roads
  • reduce our overall debt
  • give your business more working capital
  • reduce our green house gases

Can you see how this is a doable future for all of us?

We just need to be educated of how these New LED troffers and retrofit kits can give us a brighter future.

Image

Please contact us to make the switch, and check out our new website, it is a work in progress and your input is welcomed.

www.M-Lites.com